Name: Date:

## **Energy Changes in Chemical Reactions - Worksheet -ANSWERS**

## Part 1

- 1. Classify these reactions as exothermic of endothermic:
  - a. energy +  $SO_2(g) \rightarrow S(g) + O_2(g)$

**Endothermic** 

b.  $C_8H_{18}(g) + O_2(g) \rightarrow CO_2(g) + H_2O(g) + energy$ 

**Exothermic** 

c. energy +  $P_4O_{10}(s) \rightarrow P_4(s) + 5O_2(g)$ 

**Endothermic** 

d. Mg (s) +  $H_2SO_4$  (aq)  $\rightarrow$  MgSO<sub>4</sub> (aq) +  $H_2$  (g) + energy Exothermic

2. Which reactions below are endothermic?

c, i, k are endothermic

- a. Ba (s) +  $O_2$  (g)  $\rightarrow$  Ba $O_2$  (s) + energy
- b.  $PCl_3(s) + Cl_2(g) \rightarrow PCl_5(s) + energy$
- c.  $2 \text{ Sb (s)} + 3 \text{ I}_2 \text{ (s)} + \text{energy} \rightarrow 2 \text{ SbI}_3 \text{ (s)}$
- d.  $C_3H_8(g) + O_2(g) \rightarrow CO_2(g) + H_2O(g)$
- e.  $H_3PO_4$  (aq) + LiOH (aq)  $\rightarrow$  Li<sub>3</sub>PO<sub>4</sub> (aq) + H<sub>2</sub>O (I) + energy
- f. Fe (s) + CuSO<sub>4</sub> (aq)  $\rightarrow$  FeSO<sub>4</sub> (aq) + Cu (s) + energy
- g.  $CS_2(g) + O_2(g) \rightarrow CO_2(g) + SO_2(g) + energy$
- h.  $NH_3(g) + HCI(g) \rightarrow NH_4CI(s) + energy$
- i.  $CaCO_3$  (s) + energy  $\rightarrow$  CaO (s) +  $CO_2$  (g)
- j.  $Mg(s) + CrCl_3(aq) \rightarrow MgCl_2(aq) + Cr(s) + energy$
- k.  $KNO_3$  (s) + energy  $\rightarrow KNO_2$  (s) +  $O_2$  (g)
- I.  $Pb(NO_3)_2(aq) + Na_2SO_4(aq) \rightarrow PbSO_4(s) + NaNO_3(aq) + energy$
- m.  $HNO_3$  (aq) + LiOH (aq)  $\rightarrow$  LiNO<sub>3</sub> (aq) + H<sub>2</sub>O (I) + energy
- n. KBr (aq) + AgNO<sub>3</sub> (aq)  $\rightarrow$  AgBr (s) + KNO<sub>3</sub> (aq) + energy
- 3. Is the melting of ice an endothermic change or an exothermic change?

Endothermic - heat energy is required to raise the temperature of the ice to reach the melting point.

4. In photosynthesis, plants convert the sun's energy into sugars in the reaction:

$$6 CO_2(g) + 6 H_2O(I) \rightarrow C_6H_{12}O_6(s) + 6 O_2(g)$$

a. Is this reaction exothermic or endothermic?

Endothermic - energy is a reactant

b. What is the sign of the  $\Delta H$  for this reaction?

ΔH would be "+"

- 5. Dry ice is solid carbon dioxide. It does not "melt" but instead turns from a solid into a gas in a process called sublimation.
  - a. Is this change exothermic or endothermic?

Endothermic - energy is required

b. What sign would the  $\Delta H$  value have?

ΔH would be "+"

6. For the following reaction:

$$S(s) + O_2(g) \rightarrow SO_2(g)$$

$$\Delta H = -297 \, kJ/mol$$

- a. Is the reaction exothermic or endothermic? Exothermic since  $\Delta H$  is negative
- b. How does the heat content of 1 mole of SO<sub>2</sub> compare to that of 1 mole of S plus 1 mole of O<sub>2</sub>? Since the reaction is exothermic the heat content of the products is less than the heat content of the reactants.

H(products) < H(reactants)

7. Determine the  $\Delta H$  for the formation of one mole of each product in each of the following equations.

a. 
$$2 \text{ C (s)} + 3 \text{ H}_2 \text{ (g)} + \frac{1}{2} \text{ O}_2 \text{ (g)} \rightarrow \text{ C}_2 \text{H}_5 \text{OH (I)} + 235 \text{ kJ}$$
  

$$\Delta H = -235 \text{ kJ/mol}$$

b. 2 C (s) + H<sub>2</sub> (g) + 227 kJ 
$$\rightarrow$$
 C<sub>2</sub>H<sub>2</sub> (g)  
 $\Delta H = +227 kJ/mol$ 

c. 2 Ba (s) + O<sub>2</sub> (g) 
$$\rightarrow$$
 2 BaO (s) + 1115 kJ  
 $\Delta H = -557.5 \text{ kJ/mol}$ 

d. 
$$I_2$$
 (s) + Br<sub>2</sub> (l) + 81.5 kJ  $\rightarrow$  2 IBr (g)  
 $\Delta H = +40.8 \text{ kJ/mol}$ 

8. This energy from the combustion of hydrazine, N<sub>2</sub>H<sub>4</sub>, is used to power rockets into space in the reaction:

$$N_2H_4$$
 (g) +  $O_2$  (g)  $\rightarrow$   $N_2$  (g) + 2  $H_2O$  (l)  $\Delta H = -627.6 \, kJ/mol$   
How many kilograms of hydrazine would be necessary to produce  $1.0 \times 10^8 kJ$  of energy?  $5.1 \times 10^6 g = 5.1 \times 10^3 kg$ 

- 9. A simple fat molecule has the formula C<sub>3</sub>H<sub>5</sub>(OH)<sub>2</sub>OCO(CH<sub>2</sub>)<sub>2</sub>CH<sub>3</sub>. The heat of reaction when it is combusted to CO<sub>2</sub> and H<sub>2</sub>O is 6405 kJ/mol. Find the amount of energy released per gram of fat. Compare it to the amount of energy released when a carbohydrate is burned (15.6 kJ/g). Which provides more energy per gram?

  Fat 39.49 kJ/g

  Thus, fat provides more energy per gram than carbohydrates.
- 10. The amount of solar radiation received annually in a certain location is about  $8.4 \times 10^6 kJ/m^2$ . How much coke (C) must be burned to carbon dioxide in the following reaction to produce the same amount of energy?

C (s) + O<sub>2</sub> (g) 
$$\rightarrow$$
 CO<sub>2</sub> (g)  $\Delta H = -393.7 \, kJ/mol$   
2.6 × 10<sup>5</sup>g

## Part 2

- 1. Solid ammonium nitrite decomposes to form nitrogen gas and water vapour. The decomposition releases 224 kJ per mole of ammonium nitrite decomposed.
  - a. Write the balanced equation for this reaction including the energy term in the equation.

$$NH_4NO_2(s) \rightarrow N_2(g) + 2H_2O(g) + 224 kJ$$

b. Write the balanced equation for the reaction and use  $\Delta H$  notation for the energy term.

$$NH_4NO_2(s) \rightarrow N_2(g) + 2H_2O(g)$$
  $\Delta H_{rxn} = -224 kJ$ 

2. Consider the combustion of nitrogen monoxide:

NO(g) + 
$$\frac{1}{2}$$
 O<sub>2</sub>(g)  $\longrightarrow$  NO<sub>2</sub> (g)  $\Delta H$  = -56.5 kJ/mol  
How much heat would be released by the combustion of 65 g of NO (g)?  
 $\frac{1.2 \times 10^2 \ kJ}{2}$ 

3. Consider the double displacement reaction:

Na<sub>2</sub>O(s) + 2HI(g) 
$$\longrightarrow$$
 2NaI(s) + H<sub>2</sub>O(1)  $\Delta H$  = - 502.1 kJ/mol If 9.00 g of NaI(s) are formed by this process, how much heat will be released? 15.1 kJ

4. Consider the decomposition reaction:

2NaHSO<sub>4</sub> (s) 
$$\longrightarrow$$
 Na<sub>2</sub>SO<sub>4</sub> (s) + H<sub>2</sub>O(g) + SO<sub>3</sub> (g)  $\triangle H$  = +231 kJ/mol If 3.60 g of NaHSO<sub>4</sub> react, how much heat would be absorbed? 3.46 kJ

5. Consider the combustion of carbon:

$$C(s) + O_2(g)$$
  $\Delta H = -393 \text{ kJ/mol}$ 

- a. How many grams of carbon must be burned to produce 2556 kJ of energy? 78.0g
- b. How many grams of oxygen gas would have to react in order to produce 2556 kJ of energy?

208g