Equilibrium Constant - Worksheet 1

1. Write the equilibrium expression for the following reactions:

a.
$$wW + xX = uU + vV$$
$$K = \frac{[U]^u[V]^v}{[W]^w[X]^x}$$

b.
$$H_2O_{(g)} + CO_{(g)} \stackrel{?}{=} H_{2(g)} + CO_{2(g)}$$

$$K = \frac{[H_2][CO_2]}{[H_2O][CO]}$$

c.
$$COCl_{2(g)} \stackrel{?}{=} CO_{(g)} + Cl_{2(g)}$$

$$K = \frac{[Cl_2][CO]}{[COCl_2]}$$

d.
$$H_{2(g)} + Cl_{2(g)} \stackrel{?}{=} 2 HCl_{(g)} + energy$$

$$K = \frac{[HCl]^2}{[H_2][Cl_2]}$$

e.
$$CO_{(g)} + NO_{2(g)} \stackrel{?}{=} NO_{(g)} + CO_{2(g)}$$

$$K = \frac{[NO][CO_2]}{[NO_2][CO]}$$

f.
$$Zn_{(s)} + 2 Ag^{+}_{(aq)} = Zn^{2+}_{(aq)} + 2 Ag_{(s)}$$

$$K = \frac{[Zn^{2+}]}{[Ag^{+}]^{2}}$$
*Note: solids are not included

g.
$$C_2H_{6(g)} \stackrel{?}{=} H_{2(g)} + C_2H_{4(g)}$$

$$K = \frac{[H_2][C_2H_4]}{[C_2H_6]}$$

2. Consider the following equilibrium reaction:

$$H_{2(g)} + Br_{2(g)} \stackrel{>}{=} 2 HBr_{(g)} + energy$$

The K_{eq} for this reaction at 25°C is 1.02. At equilibrium the concentration of HBr is 0.50mol/L. Assuming H_2 and Br_2 are present in equal amounts, calculate the concentration of H_2 at equilibrium.

 $[H_2] = 0.50 \text{ mol/L}$

3. Analysis of the following equilibrium reaction at 900°C provides the concentrations listed below:

$$H_2O_{(g)} \,+\, CO_{(g)} \stackrel{>}{=} H_{2\,(g)} \,+\, CO_{2\,(g)}$$

Experiment	[H ₂ O]	[CO]	[H ₂]	[CO ₂]
1	0.352	0.352	0.148	0.648
2	0.266	0.266	0.234	0.234
3	0.686	0.186	0.314	0.314

Write the equilibrium expression for the reaction and calculate the value of the equilibrium constant for each experiment.

$$K = \frac{[H_2][CO_2]}{[H_2O][CO]}$$

Expt 1: K = 0.774 Expt 2: K = 0.774 Expt 3: K = 0.773

4. In the following reaction at 448°C, the equilibrium concentrations are HI = 0.0040M, H_2 = 0.0075M, I_2 = 0.000043M. Calculate the equilibrium constant given the reaction below:

$$2 HI_{(g)} \stackrel{>}{=} H_{2(g)} + I_{2(g)}$$

$$K = 0.020$$

5. If the temperature of an exothermic reaction at equilibrium is lowered, is the value of K_{eq} increased or decreased?

K will increase if the temperature at equilibrium is lowered.