EQUILIBRIUM CONSTANT - WORKSHEET 2

2 NO₂ (g)

1. Write the equilibrium constant expression for each of the following reactions:

 $O_2(g) =$

a)
$$N_2(g) + K = \frac{[NO_2]^2}{[N_2][O_2]}$$

b) 2 C(s) + 3 H₂ (g)
$$\neq$$
 C₂H₆ (g)

$$K = \frac{[C_2H_6]}{[H_2]^3}$$

c)
$$I_{2}$$
 (aq) $=$ I_{2} (s) $K = \frac{1}{[I_{2}]}$

2. For the following reaction:

Fe²⁺ (aq) + Ag⁺ (aq)
$$\Rightarrow$$
 Fe³⁺ (aq) + Ag (s) At equilibrium, [Fe²⁺] = 0.50 M, [Ag⁺] = 1.0 M, [Fe³⁺] = 1.50 M a) Calculate the equilibrium constant for the reaction. K = 3.0

- b) If at equilibrium, $[Fe^{2+}] = 0.20$ M and $[Ag^{+}] = 0.30$ M, what must be the concentration of Fe^{3+} ? $[Fe^{3+}] = 0.18$ mol/L
- 3. 2 NO (g) + O_2 (g) = 2 NO₂ (g) K = 5.0 x 10⁻⁵ Calculate the equilibrium concentration of oxygen gas if the NO and NO₂ concentrations are equal at equilibrium. $O_2 = 2.0 \times 10^4 \text{ mol/L}$
- 4. a) CH_3COOH (aq) = H^+ (aq) + CH_3COO^- (aq) $K = 1.8 \times 10^{-5}$ b) H^+ (aq) + HS^- = H_2S (aq) $K = 1.0 \times 10^7$ Which of the above reactions would have the greatest amount of products present at equilibrium compared to reactants?

Reaction b. Since K is larger the amount of products must be larger, because K is products/reactants.

5. For the reaction:

$$N_{2\,(g)}+3\,H_{2\,(g)}=2NH_{3\,(g)}+92kJ$$
 at an equilibrium temperature of $1000^{\circ}C$, a $1.00\,L$ flask contains 0.120 moles of ammonia, 1.03 moles of nitrogen and 1.62 moles of hydrogen. Calculate the equilibrium constant at this temperature.

 $K = 3.28 \times 10^{-3}$

6. For the following equilibrium reaction:

$$N_2O_{4(q)} + 58.9 \text{ kJ} = 2NO_{2(q)}$$

 $N_2O_{4\,(g)}$ + 58.9 kJ $\,\,\stackrel{<}{\scriptscriptstyle{.}}\,\,\,\, 2NO_{2\,(g)}$ a one litre flask at 55°C is found to contain 3.6 moles of $N_2O_{4\,(g)}$ in equilbrium with 1.75 moles of $NO_{2(n)}$. Calculate the value of K_{en} for this reaction.

$$K = 0.85$$

7. For the following reaction at equilibrium at 2000°C, $K_{eq} = 1.6 \times 10^3$.

$$2 \text{ NO}_{(g)} \neq N_{2(g)} + O_{2(g)}$$

 $2 \text{ NO}_{(g)} \neq N_{2 (g)} + O_{2 (g)}$ The concentration of NO is 0.13 mol/L. If the concentrations of N_2 and O_2 are equal, calculate the concentration of N₂.

$$[N_2] = 5.2 \text{ mol/L}$$

8. At equilibrium at 1120°C the concentration of the reactants and products are measured and found to be CO = 0.010M, H_2O = 0.020M, CO_2 = 0.010M, and H_2 = 0.010M. For the following reaction, does the equilibrium favour the formation of the products or the reactants?

$$CO_{(g)} + H_2O_{(g)} \neq H_{2(g)} + CO_{2(g)}$$

K = 0.50 Since K<1 the reactants are favoured.

9. At 800°C the equilibrium constant for the following reaction is 0.279.

$$CO_{2(g)} + H_{2(g)} \neq H_2O_{(g)} + CO_{(g)} \Delta H = +42.6 \text{ kJ/mol}$$

At a different temperature the equilibrium constant is 0.100. Is this different temperature higher or lower than 800°C? Give your reasoning.

If the temperature is decreased the reverse reaction must occur according to Le Châtelier's principle, so the new temperature must be lower.