EQUILIBRIUM CONSTANT - WORKSHEET 2

- 1. Write the equilibrium constant expression for each of the following reactions:
 - a) $N_2(g)$ + 2 NO₂ (g)
 - $O_2(g) \Leftrightarrow$ $3 H_2(g) \Leftrightarrow$ b) 2 C(s) + 3 H_2 (c) I_2 (aq) = I_2 (s) $C_2H_6(g)$
- 2. For the following reaction:

$$Fe^{2+}$$
 (aq) + Ag⁺ (aq) $=$ Fe³⁺ (aq) + Ag (s)

At equilibrium, $[Fe^{2+}] = 0.50 \text{ M}$, $[Ag^{+}] = 1.0 \text{ M}$, $[Fe^{3+}] = 1.50 \text{ M}$

- a) Calculate the equilibrium constant for the reaction.
- b) If at equilibrium, $[Fe^{2+}] = 0.20 \text{ M}$ and $[Ag^{+}] = 0.30 \text{ M}$, what must be the concentration of Fe³⁺?
- **\(\)** $2 \text{ NO}_2 \text{ (g)}$ K = 5.0×10^{-5} 3. 2 NO (g) + O₂ (g) Calculate the equilibrium concentration of oxygen gas if the NO and NO₂ concentrations are equal at equilibrium.
- 4. a) CH_3COOH (aq) $= H^+$ (aq) + CH_3COO^- (aq) K = 1.8 x 10⁻⁵ b) H⁺ (aq) $HS^- = H_2S (aq)$ $K = 1.0 \times 10^7$ Which of the above reactions would have the greatest amount of products present at equilibrium compared to reactants?
- 5. For the reaction:

$$N_{2(g)} + 3 H_{2(g)} = 2NH_{3(g)} + 92kJ$$

at an equilibrium temperature of 1000°C, a 1.00 L flask contains 0.120 moles of ammonia, 1.03 moles of nitrogen and 1.62 moles of hydrogen. Calculate the equilibrium constant at this temperature.

6. For the following equilibrium reaction:

$$N_2O_{4(0)} + 58.9 \text{ kJ} = 2NO_{2(0)}$$

 $N_2O_{4\,(g)}$ + 58.9 kJ = 2NO $_{2\,(g)}$ a one litre flask at 55°C is found to contain 3.6 moles of $N_2O_{4\,(g)}$ in equilbrium with 1.75 moles of $NO_{2(n)}$. Calculate the value of K_{en} for this reaction.

7. For the following reaction at equilibrium at 2000°C, $K_{eq} = 1.6 \times 10^3$.

$$2 NO_{(g)} = N_{2(g)} + O_{2(g)}$$

The concentration of NO is 0.13 mol/ \tilde{L} . If the concentrations of N₂ and O₂ are equal, calculate the concentration of N₂.

8. At equilibrium at 1120°C the concentration of the reactants and products are measured and found to be CO = 0.010M, H_2O = 0.020M, CO_2 = 0.010M, and H_2 = 0.010M. For the following reaction, does the equilibrium favour the formation of the products or the reactants?

$$CO_{(q)} + H_2O_{(q)} = H_{2(q)} + CO_{2(q)}$$

9. At 800°C the equilibrium constant for the following reaction is 0.279. $CO_{2\,(g)} + H_{2\,(g)} = H_2O_{(g)} + CO_{(g)} \Delta H = 42.6$ kJ/mol At a different temperature the equilibrium constant is 0.100. Is this different temperature higher or lower than 800°C? Give your reasoning.