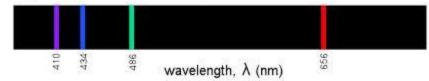

Line Spectra and the Atomic Model

The Electromagnetic Spectrum

(Page 16-18 of the textbook)

Electromagnetic energy is commonly known as	It is thought to
move in the form of Types of electromagnetic ener	gy include:
1	
2	
3	
4	
All forms of light travel as the same, which	is m/s.
There are two differing characteristics of light waves: frequency an	d wavelength. Frequency is defined
as	·
More specifically, the frequency of a light wave is the	
A wave has maximum and mir	
and The	
is known as wavelength (λ), which is measured in	Frequency
and wavelength are inversely related. When the distance between	
of a light wave is (the wave has a short waveleng	
to pass a point is, which means that the wave ha	as a
Alternatively, when a light wave has a	, fewer cycles pass a
point in a given time and the wave has a	
wave has more energy than a	

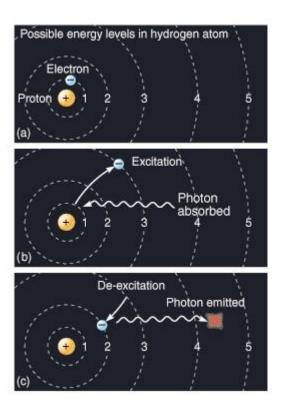
The	consists of light waves of different frequencies.			
On the far left are radio v	n the far left are radio waves with			
	energy. This means the			
X-rays, on the other hand	d, are			waves. They
	of the spectrum. Exposure to			
over a prolonged period	of time can be	to	human health.	
Humans can only detect	some types of light waves. F	or example, you c	an detect	
waves as heat. However,	you cannot detect		_ without a receive	r, even
though they pass throug				
The special band of light	that is visible to the		is k	nown as the
	These way	ves fall within the	range of	nm to
	vavelength of			
Fo	r example, a rainbow contair	ns all the colours i	n the visible spectr	um and is an
example of a		, an		sequence
of colours.				
Different types of	emit different _		of light.	Different
types of	also emit characteristic		Unlik	e a
continuous spectrum, a _		consists of		
	nan a rainbow			
is one way to distinguish	between		of matter. An	
line spectrum is	to a human's		In other	words, it's
unique. Line spectra can	unique. Line spectra can be observed by using a		It is an instrument	
	into its component			
	_grating.			


Answer questions #1-5 on page 18.

The Bohr Model of the Hydrogen Atom

(Page 21-22 of the textbook)

Rutherford's mod	lel of the atom did not explain wh	У			
orbiting a		do not			
into the nucleus. The law of					
orbits the	, it should emit	i	n the form of _		
	As the	run out of		it should	
	into the atom's	But matter	r is very	and	
this does not occu	ur.				
This brings us bac	k to line spectra. In 1913,		explained w	/hy line spectra	
were produced an	nd also why electrons		into the	e atom's nucleus.	
Bohr's theory was	s based on the line spectrum of		because of	its simplicity – it	
possesses only	electron. Bohr suggested	that electrons		around the	
nucleus in		, similar to the p	lanets revolving	g around the Sun.	
In this model, ele	ctrons are restricted to certain			, and the energy	
	, wh				
	of energy at each				
energies that are	in between specific levels.				


Hydrogen Emission Spectrum

When a hydrogen a	a hydrogen atom's electron that has a		,
the electron jumps	to a	energy level. An electron that occupies a higher	
	is said to	be in an	When the
hydrogen atom's el	ectron b	back to its original position, it	the
amount of energy it		in order to reach the higher	·•
According to Bohr, t	the lines in the		_for hydrogen are a result of
the		when the hydrogen atom's	electron from
		energy leve	l. At the lowest possible
energy level, an ele	ctron is said to be in	its	Electrons in their
ground state		any light energy.	

This model worked very well for explaining the line spectrum of hydrogen, but it did not work as well for other elements. However, it was a breakthrough because it introduced the idea that electrons the nucleus in fixed

______. He also found that each energy level could hold a _______number of electrons. The first energy level can hold _______electrons, the second energy level can hold _______electrons, and the third energy level can hold _______electrons (but is stable with ______electrons.

Answer questions #1,2,4,5 on page 22